Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundMetacognitive processes have been linked to the development of conceptual knowledge in STEM courses, but previous work has centered on the regulatory aspects of metacognition. PurposeWe interrogated the relationship between epistemic metacognition and conceptual knowledge in engineering statics courses across six universities by asking students a difficult concept question with concurrent reflection prompts that elicited their metacognitive thinking. MethodWe used a mixed‐methods design containing an embedded phase followed by an explanatory phase. This design allowed us to both prompt and measure student epistemic metacognition within the learning context. The embedded phase consisted of quantitative and qualitative analyses of student responses. The explanatory phase consisted of an analysis of six instructor interviews. ResultsAnalysis of 267 student responses showed greater variation in students' epistemic metacognition than in their ability to answer correctly. Students used different kinds of epistemic metacognitive resources about the nature and origin of knowledge, epistemological forms, epistemological activities, and stances toward knowledge. These resources generally assembled into one of two frames: aconstructed knowledge framingvaluing conceptual knowledge and sense‐making, and anauthoritative knowledge framingforegrounding numerical, algorithmic problem‐solving. All six instructors interviewed described resources that align with both frames, and none explicitly considered student epistemic metacognition. ConclusionsInstructors' explicit attention to epistemic metacognition can potentially shift students to more productive frames for engineering learning. Findings here also inform two broader issues in STEM instruction: student resistance to active learning, and the direct instruction versus inquiry‐based learning debate.more » « lessFree, publicly-accessible full text available September 16, 2026
-
Abstract BackgroundIn taking up educational technology tools and student‐centered instructional practice, there is consensus that instructors consider the unique aspects of their instructional context. However, tool adoption success is often framed narrowly by numerical uptake rates or by conformity with non‐negotiable components. PurposeWe pursue an alternative ecosystems framing which posits that variability among contexts is fundamental to understanding instructors' uptake of instructional tools and the ways their teaching trajectories develop over time. Design/MethodThrough a multiple‐case study approach using interviews, usage data, surveys, and records of community meetings, we examine 12 instructors' trajectories to illustrate the dynamic uptake of a technology tool. ResultsCross‐case analysis found that instructors' trajectories are tool‐mediated and community‐mediated. We present five cases in detail. Two foreground ways that instructors gained insight into student learning from student responses in the tool. Two illustrate the role played by the project's Community of Practice (CoP), an extra‐institutional support for deepening practice. The final case illustrates the complexity of an evolving instructional ecosystem and its role in instructors' satisfaction and continued use. ConclusionsUse of the educational technology tool perturbed ecosystems and supported instructors' evolving trajectories through mediation of instructor and student activity. Instructors' goals guided initial uptake, but both goals and practice were adapted using information from interactions with the tool and the CoP and changes in instructional contexts. The study confirms the need to understand the complexity of the uptake of innovations and illustrates opportunities for educators, developers, and administrators to enhance uptake and support diversity goals.more » « less
An official website of the United States government
